Step |
Hyp |
Ref |
Expression |
1 |
|
scottrankd.1 |
|- ( ph -> B e. Scott A ) |
2 |
|
scottex2 |
|- Scott A e. _V |
3 |
2
|
rankval4 |
|- ( rank ` Scott A ) = U_ x e. Scott A suc ( rank ` x ) |
4 |
3
|
a1i |
|- ( ph -> ( rank ` Scott A ) = U_ x e. Scott A suc ( rank ` x ) ) |
5 |
1
|
adantr |
|- ( ( ph /\ x e. Scott A ) -> B e. Scott A ) |
6 |
|
simpr |
|- ( ( ph /\ x e. Scott A ) -> x e. Scott A ) |
7 |
5 6
|
scottelrankd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` B ) C_ ( rank ` x ) ) |
8 |
6 5
|
scottelrankd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` x ) C_ ( rank ` B ) ) |
9 |
7 8
|
eqssd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` B ) = ( rank ` x ) ) |
10 |
9
|
suceqd |
|- ( ( ph /\ x e. Scott A ) -> suc ( rank ` B ) = suc ( rank ` x ) ) |
11 |
10
|
iuneq2dv |
|- ( ph -> U_ x e. Scott A suc ( rank ` B ) = U_ x e. Scott A suc ( rank ` x ) ) |
12 |
1
|
ne0d |
|- ( ph -> Scott A =/= (/) ) |
13 |
|
iunconst |
|- ( Scott A =/= (/) -> U_ x e. Scott A suc ( rank ` B ) = suc ( rank ` B ) ) |
14 |
12 13
|
syl |
|- ( ph -> U_ x e. Scott A suc ( rank ` B ) = suc ( rank ` B ) ) |
15 |
4 11 14
|
3eqtr2d |
|- ( ph -> ( rank ` Scott A ) = suc ( rank ` B ) ) |