| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scottrankd.1 |
|- ( ph -> B e. Scott A ) |
| 2 |
|
scottex2 |
|- Scott A e. _V |
| 3 |
2
|
rankval4 |
|- ( rank ` Scott A ) = U_ x e. Scott A suc ( rank ` x ) |
| 4 |
3
|
a1i |
|- ( ph -> ( rank ` Scott A ) = U_ x e. Scott A suc ( rank ` x ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ x e. Scott A ) -> B e. Scott A ) |
| 6 |
|
simpr |
|- ( ( ph /\ x e. Scott A ) -> x e. Scott A ) |
| 7 |
5 6
|
scottelrankd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` B ) C_ ( rank ` x ) ) |
| 8 |
6 5
|
scottelrankd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` x ) C_ ( rank ` B ) ) |
| 9 |
7 8
|
eqssd |
|- ( ( ph /\ x e. Scott A ) -> ( rank ` B ) = ( rank ` x ) ) |
| 10 |
9
|
suceqd |
|- ( ( ph /\ x e. Scott A ) -> suc ( rank ` B ) = suc ( rank ` x ) ) |
| 11 |
10
|
iuneq2dv |
|- ( ph -> U_ x e. Scott A suc ( rank ` B ) = U_ x e. Scott A suc ( rank ` x ) ) |
| 12 |
1
|
ne0d |
|- ( ph -> Scott A =/= (/) ) |
| 13 |
|
iunconst |
|- ( Scott A =/= (/) -> U_ x e. Scott A suc ( rank ` B ) = suc ( rank ` B ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> U_ x e. Scott A suc ( rank ` B ) = suc ( rank ` B ) ) |
| 15 |
4 11 14
|
3eqtr2d |
|- ( ph -> ( rank ` Scott A ) = suc ( rank ` B ) ) |