Metamath Proof Explorer


Theorem gruscottcld

Description: If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses gruscottcld.1
|- ( ph -> G e. Univ )
gruscottcld.2
|- ( ph -> B e. G )
gruscottcld.3
|- ( ph -> B e. Scott A )
Assertion gruscottcld
|- ( ph -> Scott A e. G )

Proof

Step Hyp Ref Expression
1 gruscottcld.1
 |-  ( ph -> G e. Univ )
2 gruscottcld.2
 |-  ( ph -> B e. G )
3 gruscottcld.3
 |-  ( ph -> B e. Scott A )
4 3 scottrankd
 |-  ( ph -> ( rank ` Scott A ) = suc ( rank ` B ) )
5 1 2 grurankcld
 |-  ( ph -> ( rank ` B ) e. G )
6 1 5 grusucd
 |-  ( ph -> suc ( rank ` B ) e. G )
7 4 6 eqeltrd
 |-  ( ph -> ( rank ` Scott A ) e. G )
8 scottex2
 |-  Scott A e. _V
9 8 a1i
 |-  ( ph -> Scott A e. _V )
10 1 7 9 grurankrcld
 |-  ( ph -> Scott A e. G )