Description: Deduction associated with suceq . (Contributed by Rohan Ridenour, 8-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suceqd.1 | |- ( ph -> A = B ) |
|
| Assertion | suceqd | |- ( ph -> suc A = suc B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | |- ( ph -> A = B ) |
|
| 2 | 1 | sneqd | |- ( ph -> { A } = { B } ) |
| 3 | 1 2 | uneq12d | |- ( ph -> ( A u. { A } ) = ( B u. { B } ) ) |
| 4 | df-suc | |- suc A = ( A u. { A } ) |
|
| 5 | df-suc | |- suc B = ( B u. { B } ) |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( ph -> suc A = suc B ) |