Description: Deduction associated with suceq . (Contributed by Rohan Ridenour, 8-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | suceqd | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | suceq | ⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |