Description: Deduction associated with suceq . (Contributed by Rohan Ridenour, 8-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | suceqd | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | suceq | ⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |