Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
suceqd
Next ⟩
suceq
Metamath Proof Explorer
Ascii
Unicode
Theorem
suceqd
Description:
Deduction associated with
suceq
.
(Contributed by
Rohan Ridenour
, 8-Aug-2023)
Ref
Expression
Hypothesis
suceqd.1
⊢
φ
→
A
=
B
Assertion
suceqd
⊢
φ
→
suc
⁡
A
=
suc
⁡
B
Proof
Step
Hyp
Ref
Expression
1
suceqd.1
⊢
φ
→
A
=
B
2
1
sneqd
⊢
φ
→
A
=
B
3
1
2
uneq12d
⊢
φ
→
A
∪
A
=
B
∪
B
4
df-suc
⊢
suc
⁡
A
=
A
∪
A
5
df-suc
⊢
suc
⁡
B
=
B
∪
B
6
3
4
5
3eqtr4g
⊢
φ
→
suc
⁡
A
=
suc
⁡
B