Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Grothendieck universes are closed under collection
scottrankd
Next ⟩
gruscottcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
scottrankd
Description:
Rank of a nonempty Scott's trick set.
(Contributed by
Rohan Ridenour
, 11-Aug-2023)
Ref
Expression
Hypothesis
scottrankd.1
⊢
φ
→
B
∈
Scott
A
Assertion
scottrankd
⊢
φ
→
rank
⁡
Scott
A
=
suc
⁡
rank
⁡
B
Proof
Step
Hyp
Ref
Expression
1
scottrankd.1
⊢
φ
→
B
∈
Scott
A
2
scottex2
⊢
Scott
A
∈
V
3
2
rankval4
⊢
rank
⁡
Scott
A
=
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
x
4
3
a1i
⊢
φ
→
rank
⁡
Scott
A
=
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
x
5
1
adantr
⊢
φ
∧
x
∈
Scott
A
→
B
∈
Scott
A
6
simpr
⊢
φ
∧
x
∈
Scott
A
→
x
∈
Scott
A
7
5
6
scottelrankd
⊢
φ
∧
x
∈
Scott
A
→
rank
⁡
B
⊆
rank
⁡
x
8
6
5
scottelrankd
⊢
φ
∧
x
∈
Scott
A
→
rank
⁡
x
⊆
rank
⁡
B
9
7
8
eqssd
⊢
φ
∧
x
∈
Scott
A
→
rank
⁡
B
=
rank
⁡
x
10
9
suceqd
⊢
φ
∧
x
∈
Scott
A
→
suc
⁡
rank
⁡
B
=
suc
⁡
rank
⁡
x
11
10
iuneq2dv
⊢
φ
→
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
B
=
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
x
12
1
ne0d
⊢
φ
→
Scott
A
≠
∅
13
iunconst
⊢
Scott
A
≠
∅
→
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
B
=
suc
⁡
rank
⁡
B
14
12
13
syl
⊢
φ
→
⋃
x
∈
Scott
A
suc
⁡
rank
⁡
B
=
suc
⁡
rank
⁡
B
15
4
11
14
3eqtr2d
⊢
φ
→
rank
⁡
Scott
A
=
suc
⁡
rank
⁡
B