Metamath Proof Explorer


Theorem scottrankd

Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis scottrankd.1 φBScottA
Assertion scottrankd φrankScottA=sucrankB

Proof

Step Hyp Ref Expression
1 scottrankd.1 φBScottA
2 scottex2 ScottAV
3 2 rankval4 rankScottA=xScottAsucrankx
4 3 a1i φrankScottA=xScottAsucrankx
5 1 adantr φxScottABScottA
6 simpr φxScottAxScottA
7 5 6 scottelrankd φxScottArankBrankx
8 6 5 scottelrankd φxScottArankxrankB
9 7 8 eqssd φxScottArankB=rankx
10 9 suceqd φxScottAsucrankB=sucrankx
11 10 iuneq2dv φxScottAsucrankB=xScottAsucrankx
12 1 ne0d φScottA
13 iunconst ScottAxScottAsucrankB=sucrankB
14 12 13 syl φxScottAsucrankB=sucrankB
15 4 11 14 3eqtr2d φrankScottA=sucrankB