Metamath Proof Explorer


Theorem rankval4

Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. (Contributed by NM, 12-Oct-2003)

Ref Expression
Hypothesis rankr1b.1 AV
Assertion rankval4 rankA=xAsucrankx

Proof

Step Hyp Ref Expression
1 rankr1b.1 AV
2 nfcv _xA
3 nfcv _xR1
4 nfiu1 _xxAsucrankx
5 3 4 nffv _xR1xAsucrankx
6 2 5 dfss2f AR1xAsucrankxxxAxR1xAsucrankx
7 vex xV
8 7 rankid xR1sucrankx
9 ssiun2 xAsucrankxxAsucrankx
10 rankon rankxOn
11 10 onsuci sucrankxOn
12 11 rgenw xAsucrankxOn
13 iunon AVxAsucrankxOnxAsucrankxOn
14 1 12 13 mp2an xAsucrankxOn
15 r1ord3 sucrankxOnxAsucrankxOnsucrankxxAsucrankxR1sucrankxR1xAsucrankx
16 11 14 15 mp2an sucrankxxAsucrankxR1sucrankxR1xAsucrankx
17 9 16 syl xAR1sucrankxR1xAsucrankx
18 17 sseld xAxR1sucrankxxR1xAsucrankx
19 8 18 mpi xAxR1xAsucrankx
20 6 19 mpgbir AR1xAsucrankx
21 fvex R1xAsucrankxV
22 21 rankss AR1xAsucrankxrankArankR1xAsucrankx
23 20 22 ax-mp rankArankR1xAsucrankx
24 r1ord3 xAsucrankxOnyOnxAsucrankxyR1xAsucrankxR1y
25 14 24 mpan yOnxAsucrankxyR1xAsucrankxR1y
26 25 ss2rabi yOn|xAsucrankxyyOn|R1xAsucrankxR1y
27 intss yOn|xAsucrankxyyOn|R1xAsucrankxR1yyOn|R1xAsucrankxR1yyOn|xAsucrankxy
28 26 27 ax-mp yOn|R1xAsucrankxR1yyOn|xAsucrankxy
29 rankval2 R1xAsucrankxVrankR1xAsucrankx=yOn|R1xAsucrankxR1y
30 21 29 ax-mp rankR1xAsucrankx=yOn|R1xAsucrankxR1y
31 intmin xAsucrankxOnyOn|xAsucrankxy=xAsucrankx
32 14 31 ax-mp yOn|xAsucrankxy=xAsucrankx
33 32 eqcomi xAsucrankx=yOn|xAsucrankxy
34 28 30 33 3sstr4i rankR1xAsucrankxxAsucrankx
35 23 34 sstri rankAxAsucrankx
36 iunss xAsucrankxrankAxAsucrankxrankA
37 1 rankel xArankxrankA
38 rankon rankAOn
39 10 38 onsucssi rankxrankAsucrankxrankA
40 37 39 sylib xAsucrankxrankA
41 36 40 mprgbir xAsucrankxrankA
42 35 41 eqssi rankA=xAsucrankx