Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. (Contributed by NM, 12-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rankr1b.1 | |
|
Assertion | rankval4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1b.1 | |
|
2 | nfcv | |
|
3 | nfcv | |
|
4 | nfiu1 | |
|
5 | 3 4 | nffv | |
6 | 2 5 | dfss2f | |
7 | vex | |
|
8 | 7 | rankid | |
9 | ssiun2 | |
|
10 | rankon | |
|
11 | 10 | onsuci | |
12 | 11 | rgenw | |
13 | iunon | |
|
14 | 1 12 13 | mp2an | |
15 | r1ord3 | |
|
16 | 11 14 15 | mp2an | |
17 | 9 16 | syl | |
18 | 17 | sseld | |
19 | 8 18 | mpi | |
20 | 6 19 | mpgbir | |
21 | fvex | |
|
22 | 21 | rankss | |
23 | 20 22 | ax-mp | |
24 | r1ord3 | |
|
25 | 14 24 | mpan | |
26 | 25 | ss2rabi | |
27 | intss | |
|
28 | 26 27 | ax-mp | |
29 | rankval2 | |
|
30 | 21 29 | ax-mp | |
31 | intmin | |
|
32 | 14 31 | ax-mp | |
33 | 32 | eqcomi | |
34 | 28 30 33 | 3sstr4i | |
35 | 23 34 | sstri | |
36 | iunss | |
|
37 | 1 | rankel | |
38 | rankon | |
|
39 | 10 38 | onsucssi | |
40 | 37 39 | sylib | |
41 | 36 40 | mprgbir | |
42 | 35 41 | eqssi | |