Metamath Proof Explorer


Theorem rankval2

Description: Value of an alternate definition of the rank function. Definition of BellMachover p. 478. (Contributed by NM, 8-Oct-2003)

Ref Expression
Assertion rankval2 ABrankA=xOn|AR1x

Proof

Step Hyp Ref Expression
1 rankvalg ABrankA=xOn|AR1sucx
2 r1suc xOnR1sucx=𝒫R1x
3 2 eleq2d xOnAR1sucxA𝒫R1x
4 fvex R1xV
5 4 elpw2 A𝒫R1xAR1x
6 3 5 bitrdi xOnAR1sucxAR1x
7 6 rabbiia xOn|AR1sucx=xOn|AR1x
8 7 inteqi xOn|AR1sucx=xOn|AR1x
9 1 8 eqtrdi ABrankA=xOn|AR1x