Metamath Proof Explorer


Theorem scottex2

Description: scottex expressed using Scott . (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Assertion scottex2 ScottAV

Proof

Step Hyp Ref Expression
1 df-scott ScottA=xA|yArankxranky
2 scottex xA|yArankxrankyV
3 1 2 eqeltri ScottAV