Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of Jech p. 72, is a set. (Contributed by NM, 13-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | scottex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |
|
2 | eleq1 | |
|
3 | 1 2 | mpbiri | |
4 | rabexg | |
|
5 | 3 4 | syl | |
6 | neq0 | |
|
7 | nfra1 | |
|
8 | nfcv | |
|
9 | 7 8 | nfrabw | |
10 | 9 | nfel1 | |
11 | rsp | |
|
12 | 11 | com12 | |
13 | 12 | adantr | |
14 | 13 | ss2rabdv | |
15 | rankon | |
|
16 | fveq2 | |
|
17 | 16 | sseq1d | |
18 | 17 | elrab | |
19 | 18 | simprbi | |
20 | 19 | rgen | |
21 | sseq2 | |
|
22 | 21 | ralbidv | |
23 | 22 | rspcev | |
24 | 15 20 23 | mp2an | |
25 | bndrank | |
|
26 | 24 25 | ax-mp | |
27 | 26 | ssex | |
28 | 14 27 | syl | |
29 | 10 28 | exlimi | |
30 | 6 29 | sylbi | |
31 | 5 30 | pm2.61i | |