Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
4 |
|
rabexg |
⊢ ( 𝐴 ∈ V → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
6 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
7 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
9 |
7 8
|
nfrabw |
⊢ Ⅎ 𝑦 { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
10 |
9
|
nfel1 |
⊢ Ⅎ 𝑦 { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
11 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( 𝑦 ∈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
12 |
11
|
com12 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
13 |
12
|
ralrimivw |
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
14 |
|
ss2rab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
15 |
13 14
|
sylibr |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
16 |
|
rankon |
⊢ ( rank ‘ 𝑦 ) ∈ On |
17 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑤 ) ) |
18 |
17
|
sseq1d |
⊢ ( 𝑥 = 𝑤 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
19 |
18
|
elrab |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ↔ ( 𝑤 ∈ 𝐴 ∧ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
20 |
19
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) |
21 |
20
|
rgen |
⊢ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) |
22 |
|
sseq2 |
⊢ ( 𝑧 = ( rank ‘ 𝑦 ) → ( ( rank ‘ 𝑤 ) ⊆ 𝑧 ↔ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑧 = ( rank ‘ 𝑦 ) → ( ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 ↔ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( rank ‘ 𝑦 ) ∈ On ∧ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) → ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 ) |
25 |
16 21 24
|
mp2an |
⊢ ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 |
26 |
|
bndrank |
⊢ ( ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 → { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
27 |
25 26
|
ax-mp |
⊢ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
28 |
27
|
ssex |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
29 |
15 28
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
30 |
10 29
|
exlimi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
31 |
6 30
|
sylbi |
⊢ ( ¬ 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
32 |
5 31
|
pm2.61i |
⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |