| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabeq |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ ∅ ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
| 2 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ) |
| 4 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 5 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) |
| 6 |
|
eqid |
⊢ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) |
| 7 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) |
| 9 |
5 8
|
exlimi |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) |
| 10 |
4 9
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) |
| 11 |
|
fvex |
⊢ ( rank ‘ 𝑥 ) ∈ V |
| 12 |
|
eqeq1 |
⊢ ( 𝑦 = ( rank ‘ 𝑥 ) → ( 𝑦 = ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) |
| 13 |
12
|
anbi2d |
⊢ ( 𝑦 = ( rank ‘ 𝑥 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) ) |
| 14 |
11 13
|
spcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 15 |
14
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 16 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 17 |
15 16
|
sylibr |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 18 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) |
| 19 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 20 |
19
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( rank ‘ 𝑥 ) ) ) |
| 21 |
17 18 20
|
3imtr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) → ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ) |
| 22 |
10 21
|
syl |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ) |
| 23 |
|
abn0 |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( 𝐴 ≠ ∅ → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ≠ ∅ ) |
| 25 |
11
|
dfiin2 |
⊢ ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } |
| 26 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
| 27 |
|
eleq1 |
⊢ ( 𝑦 = ( rank ‘ 𝑥 ) → ( 𝑦 ∈ On ↔ ( rank ‘ 𝑥 ) ∈ On ) ) |
| 28 |
26 27
|
mpbiri |
⊢ ( 𝑦 = ( rank ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 29 |
28
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 30 |
29
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ⊆ On |
| 31 |
|
onint |
⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ⊆ On ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ) |
| 32 |
30 31
|
mpan |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ≠ ∅ → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ) |
| 33 |
25 32
|
eqeltrid |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ) |
| 34 |
|
nfii1 |
⊢ Ⅎ 𝑥 ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 35 |
34
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 36 |
|
eqeq1 |
⊢ ( 𝑦 = ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) → ( 𝑦 = ( rank ‘ 𝑥 ) ↔ ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) |
| 37 |
35 36
|
rexbid |
⊢ ( 𝑦 = ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) |
| 38 |
37
|
elabg |
⊢ ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } → ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) ) |
| 39 |
38
|
ibi |
⊢ ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( rank ‘ 𝑥 ) } → ∃ 𝑥 ∈ 𝐴 ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) ) |
| 40 |
|
ssid |
⊢ ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑦 ) |
| 41 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑦 ) ) |
| 42 |
41
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 43 |
42
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 44 |
40 43
|
mpan2 |
⊢ ( 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 45 |
|
iinss |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 47 |
|
sseq1 |
⊢ ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) → ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 48 |
46 47
|
imbitrid |
⊢ ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 49 |
48
|
ralrimiv |
⊢ ( ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 50 |
49
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∩ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 51 |
24 33 39 50
|
4syl |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 52 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 53 |
51 52
|
sylibr |
⊢ ( 𝐴 ≠ ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ) |
| 54 |
53
|
necon4i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ → 𝐴 = ∅ ) |
| 55 |
3 54
|
impbii |
⊢ ( 𝐴 = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ) |