| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑥 ∣ 𝜑 } |
| 2 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
| 3 |
|
nfv |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
| 4 |
2 3
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝑥 ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝑧 = 𝑥 → ( ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 8 |
7
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 9 |
1 2 4 5 8
|
cbvrabw |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
| 10 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } |
| 11 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 13 |
|
df-sbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 14 |
13
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 16 |
12 15
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 17 |
11 16
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
| 18 |
17
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
| 19 |
9 10 18
|
3eqtri |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
| 20 |
|
scottex |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
| 21 |
19 20
|
eqeltrri |
⊢ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V |