Description: Theorem scheme version of scottex . The collection of all x of minimum rank such that ph ( x ) is true, is a set. (Contributed by NM, 13-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | scottexs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | |
|
2 | nfab1 | |
|
3 | nfv | |
|
4 | 2 3 | nfralw | |
5 | nfv | |
|
6 | fveq2 | |
|
7 | 6 | sseq1d | |
8 | 7 | ralbidv | |
9 | 1 2 4 5 8 | cbvrabw | |
10 | df-rab | |
|
11 | abid | |
|
12 | df-ral | |
|
13 | df-sbc | |
|
14 | 13 | imbi1i | |
15 | 14 | albii | |
16 | 12 15 | bitr4i | |
17 | 11 16 | anbi12i | |
18 | 17 | abbii | |
19 | 9 10 18 | 3eqtri | |
20 | scottex | |
|
21 | 19 20 | eqeltrri | |