Description: Theorem scheme version of scott0 . The collection of all x of minimum rank such that ph ( x ) is true, is not empty iff there is an x such that ph ( x ) holds. (Contributed by NM, 13-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | scott0s | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 | |
|
2 | scott0 | |
|
3 | nfcv | |
|
4 | nfab1 | |
|
5 | nfv | |
|
6 | 4 5 | nfralw | |
7 | nfv | |
|
8 | fveq2 | |
|
9 | 8 | sseq1d | |
10 | 9 | ralbidv | |
11 | 3 4 6 7 10 | cbvrabw | |
12 | df-rab | |
|
13 | abid | |
|
14 | df-ral | |
|
15 | df-sbc | |
|
16 | 15 | imbi1i | |
17 | 16 | albii | |
18 | 14 17 | bitr4i | |
19 | 13 18 | anbi12i | |
20 | 19 | abbii | |
21 | 11 12 20 | 3eqtri | |
22 | 21 | eqeq1i | |
23 | 2 22 | bitri | |
24 | 23 | necon3bii | |
25 | 1 24 | bitr3i | |