Metamath Proof Explorer


Theorem cplem1

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypotheses cplem1.1 C=yB|zBrankyrankz
cplem1.2 D=xAC
Assertion cplem1 xABBD

Proof

Step Hyp Ref Expression
1 cplem1.1 C=yB|zBrankyrankz
2 cplem1.2 D=xAC
3 scott0 B=yB|zBrankyrankz=
4 1 eqeq1i C=yB|zBrankyrankz=
5 3 4 bitr4i B=C=
6 5 necon3bii BC
7 n0 CwwC
8 6 7 bitri BwwC
9 1 ssrab3 CB
10 9 sseli wCwB
11 10 a1i xAwCwB
12 ssiun2 xACxAC
13 12 2 sseqtrrdi xACD
14 13 sseld xAwCwD
15 11 14 jcad xAwCwBwD
16 inelcm wBwDBD
17 15 16 syl6 xAwCBD
18 17 exlimdv xAwwCBD
19 8 18 biimtrid xABBD
20 19 rgen xABBD