| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnuprdlem2.1 |
|
| 2 |
|
mnuprdlem2.4 |
|
| 3 |
|
mnuprdlem2.5 |
|
| 4 |
|
mnuprdlem2.8 |
|
| 5 |
|
eleq1 |
|
| 6 |
5
|
anbi1d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
|
p0ex |
|
| 9 |
8
|
prid2 |
|
| 10 |
9
|
a1i |
|
| 11 |
7 4 10
|
rspcdva |
|
| 12 |
|
simpl |
|
| 13 |
|
simprl |
|
| 14 |
|
simpr |
|
| 15 |
|
0nep0 |
|
| 16 |
15
|
necomi |
|
| 17 |
16
|
a1i |
|
| 18 |
|
0ex |
|
| 19 |
18
|
sneqr |
|
| 20 |
19
|
eqcomd |
|
| 21 |
3 20
|
nsyl |
|
| 22 |
21
|
neqned |
|
| 23 |
17 22
|
nelprd |
|
| 24 |
23
|
adantr |
|
| 25 |
14 24
|
elnelneqd |
|
| 26 |
25
|
adantrr |
|
| 27 |
26
|
adantrl |
|
| 28 |
|
elpri |
|
| 29 |
28 1
|
eleq2s |
|
| 30 |
29
|
ord |
|
| 31 |
13 27 30
|
sylc |
|
| 32 |
31
|
unieqd |
|
| 33 |
|
snex |
|
| 34 |
8 33
|
unipr |
|
| 35 |
|
df-pr |
|
| 36 |
34 35
|
eqtr4i |
|
| 37 |
32 36
|
eqtrdi |
|
| 38 |
|
simprrr |
|
| 39 |
37 38
|
eqsstrrd |
|
| 40 |
|
prssg |
|
| 41 |
18 2 40
|
sylancr |
|
| 42 |
41
|
biimprd |
|
| 43 |
12 39 42
|
sylc |
|
| 44 |
43
|
simprd |
|
| 45 |
|
eleq2w |
|
| 46 |
|
unieq |
|
| 47 |
46
|
sseq1d |
|
| 48 |
45 47
|
anbi12d |
|
| 49 |
11 44 48
|
rexlimddvcbvw |
|