Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Misc
elnelneqd
Metamath Proof Explorer
Description: Two classes are not equal if there is an element of one which is not an
element of the other. (Contributed by Rohan Ridenour , 11-Aug-2023)
Ref
Expression
Hypotheses
elnelneqd.1
⊢ φ → C ∈ A
elnelneqd.2
⊢ φ → ¬ C ∈ B
Assertion
elnelneqd
⊢ φ → ¬ A = B
Proof
Step
Hyp
Ref
Expression
1
elnelneqd.1
⊢ φ → C ∈ A
2
elnelneqd.2
⊢ φ → ¬ C ∈ B
3
1
adantr
⊢ φ ∧ A = B → C ∈ A
4
simpr
⊢ φ ∧ A = B → A = B
5
3 4
eleqtrd
⊢ φ ∧ A = B → C ∈ B
6
2 5
mtand
⊢ φ → ¬ A = B