Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Rohan Ridenour Misc elnelneqd  
				
		 
		
			
		 
		Description:   Two classes are not equal if there is an element of one which is not an
       element of the other.  (Contributed by Rohan Ridenour , 11-Aug-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						elnelneqd.1    ⊢   φ   →   C  ∈  A         
					 
					
						elnelneqd.2    ⊢   φ   →   ¬   C  ∈  B           
					 
				
					Assertion 
					elnelneqd    ⊢   φ   →   ¬   A  =  B           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							elnelneqd.1   ⊢   φ   →   C  ∈  A         
						
							2 
								
							 
							elnelneqd.2   ⊢   φ   →   ¬   C  ∈  B           
						
							3 
								1 
							 
							adantr   ⊢    φ   ∧   A  =  B     →   C  ∈  A         
						
							4 
								
							 
							simpr   ⊢    φ   ∧   A  =  B     →   A  =  B         
						
							5 
								3  4 
							 
							eleqtrd   ⊢    φ   ∧   A  =  B     →   C  ∈  B         
						
							6 
								2  5 
							 
							mtand   ⊢   φ   →   ¬   A  =  B