Metamath Proof Explorer


Theorem elnelneqd

Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses elnelneqd.1 φ C A
elnelneqd.2 φ ¬ C B
Assertion elnelneqd φ ¬ A = B

Proof

Step Hyp Ref Expression
1 elnelneqd.1 φ C A
2 elnelneqd.2 φ ¬ C B
3 1 adantr φ A = B C A
4 simpr φ A = B A = B
5 3 4 eleqtrd φ A = B C B
6 2 5 mtand φ ¬ A = B