Metamath Proof Explorer


Theorem elnelneqd

Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses elnelneqd.1 ( 𝜑𝐶𝐴 )
elnelneqd.2 ( 𝜑 → ¬ 𝐶𝐵 )
Assertion elnelneqd ( 𝜑 → ¬ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elnelneqd.1 ( 𝜑𝐶𝐴 )
2 elnelneqd.2 ( 𝜑 → ¬ 𝐶𝐵 )
3 1 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐶𝐴 )
4 simpr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
5 3 4 eleqtrd ( ( 𝜑𝐴 = 𝐵 ) → 𝐶𝐵 )
6 2 5 mtand ( 𝜑 → ¬ 𝐴 = 𝐵 )