Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Misc
elnelneqd
Metamath Proof Explorer
Description: Two classes are not equal if there is an element of one which is not an
element of the other. (Contributed by Rohan Ridenour , 11-Aug-2023)
Ref
Expression
Hypotheses
elnelneqd.1
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 )
elnelneqd.2
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐵 )
Assertion
elnelneqd
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
elnelneqd.1
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 )
2
elnelneqd.2
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐵 )
3
1
adantr
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 ∈ 𝐴 )
4
simpr
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
5
3 4
eleqtrd
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 ∈ 𝐵 )
6
2 5
mtand
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 )