Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elnelneqd.1 | |- ( ph -> C e. A ) |
|
elnelneqd.2 | |- ( ph -> -. C e. B ) |
||
Assertion | elnelneqd | |- ( ph -> -. A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnelneqd.1 | |- ( ph -> C e. A ) |
|
2 | elnelneqd.2 | |- ( ph -> -. C e. B ) |
|
3 | 1 | adantr | |- ( ( ph /\ A = B ) -> C e. A ) |
4 | simpr | |- ( ( ph /\ A = B ) -> A = B ) |
|
5 | 3 4 | eleqtrd | |- ( ( ph /\ A = B ) -> C e. B ) |
6 | 2 5 | mtand | |- ( ph -> -. A = B ) |