Metamath Proof Explorer


Theorem elnelneqd

Description: Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses elnelneqd.1
|- ( ph -> C e. A )
elnelneqd.2
|- ( ph -> -. C e. B )
Assertion elnelneqd
|- ( ph -> -. A = B )

Proof

Step Hyp Ref Expression
1 elnelneqd.1
 |-  ( ph -> C e. A )
2 elnelneqd.2
 |-  ( ph -> -. C e. B )
3 1 adantr
 |-  ( ( ph /\ A = B ) -> C e. A )
4 simpr
 |-  ( ( ph /\ A = B ) -> A = B )
5 3 4 eleqtrd
 |-  ( ( ph /\ A = B ) -> C e. B )
6 2 5 mtand
 |-  ( ph -> -. A = B )