Metamath Proof Explorer


Theorem elnelneq2d

Description: Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses elnelneq2d.1
|- ( ph -> A e. C )
elnelneq2d.2
|- ( ph -> -. B e. C )
Assertion elnelneq2d
|- ( ph -> -. A = B )

Proof

Step Hyp Ref Expression
1 elnelneq2d.1
 |-  ( ph -> A e. C )
2 elnelneq2d.2
 |-  ( ph -> -. B e. C )
3 simpr
 |-  ( ( ph /\ A = B ) -> A = B )
4 1 adantr
 |-  ( ( ph /\ A = B ) -> A e. C )
5 3 4 eqeltrrd
 |-  ( ( ph /\ A = B ) -> B e. C )
6 2 5 mtand
 |-  ( ph -> -. A = B )