Description: Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elnelneq2d.1 | |- ( ph -> A e. C ) |
|
elnelneq2d.2 | |- ( ph -> -. B e. C ) |
||
Assertion | elnelneq2d | |- ( ph -> -. A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnelneq2d.1 | |- ( ph -> A e. C ) |
|
2 | elnelneq2d.2 | |- ( ph -> -. B e. C ) |
|
3 | simpr | |- ( ( ph /\ A = B ) -> A = B ) |
|
4 | 1 | adantr | |- ( ( ph /\ A = B ) -> A e. C ) |
5 | 3 4 | eqeltrrd | |- ( ( ph /\ A = B ) -> B e. C ) |
6 | 2 5 | mtand | |- ( ph -> -. A = B ) |