Description: Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnelneq2d.1 | |- ( ph -> A e. C ) |
|
| elnelneq2d.2 | |- ( ph -> -. B e. C ) |
||
| Assertion | elnelneq2d | |- ( ph -> -. A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnelneq2d.1 | |- ( ph -> A e. C ) |
|
| 2 | elnelneq2d.2 | |- ( ph -> -. B e. C ) |
|
| 3 | simpr | |- ( ( ph /\ A = B ) -> A = B ) |
|
| 4 | 1 | adantr | |- ( ( ph /\ A = B ) -> A e. C ) |
| 5 | 3 4 | eqeltrrd | |- ( ( ph /\ A = B ) -> B e. C ) |
| 6 | 2 5 | mtand | |- ( ph -> -. A = B ) |