Metamath Proof Explorer


Theorem mnuprdlem2

Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses mnuprdlem2.1 𝐹 = { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } }
mnuprdlem2.4 ( 𝜑𝐵𝑈 )
mnuprdlem2.5 ( 𝜑 → ¬ 𝐴 = ∅ )
mnuprdlem2.8 ( 𝜑 → ∀ 𝑖 ∈ { ∅ , { ∅ } } ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) )
Assertion mnuprdlem2 ( 𝜑𝐵𝑤 )

Proof

Step Hyp Ref Expression
1 mnuprdlem2.1 𝐹 = { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } }
2 mnuprdlem2.4 ( 𝜑𝐵𝑈 )
3 mnuprdlem2.5 ( 𝜑 → ¬ 𝐴 = ∅ )
4 mnuprdlem2.8 ( 𝜑 → ∀ 𝑖 ∈ { ∅ , { ∅ } } ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) )
5 eleq1 ( 𝑖 = { ∅ } → ( 𝑖𝑢 ↔ { ∅ } ∈ 𝑢 ) )
6 5 anbi1d ( 𝑖 = { ∅ } → ( ( 𝑖𝑢 𝑢𝑤 ) ↔ ( { ∅ } ∈ 𝑢 𝑢𝑤 ) ) )
7 6 rexbidv ( 𝑖 = { ∅ } → ( ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ↔ ∃ 𝑢𝐹 ( { ∅ } ∈ 𝑢 𝑢𝑤 ) ) )
8 p0ex { ∅ } ∈ V
9 8 prid2 { ∅ } ∈ { ∅ , { ∅ } }
10 9 a1i ( 𝜑 → { ∅ } ∈ { ∅ , { ∅ } } )
11 7 4 10 rspcdva ( 𝜑 → ∃ 𝑢𝐹 ( { ∅ } ∈ 𝑢 𝑢𝑤 ) )
12 simpl ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝜑 )
13 simprl ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝑎𝐹 )
14 simpr ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → { ∅ } ∈ 𝑎 )
15 0nep0 ∅ ≠ { ∅ }
16 15 necomi { ∅ } ≠ ∅
17 16 a1i ( 𝜑 → { ∅ } ≠ ∅ )
18 0ex ∅ ∈ V
19 18 sneqr ( { ∅ } = { 𝐴 } → ∅ = 𝐴 )
20 19 eqcomd ( { ∅ } = { 𝐴 } → 𝐴 = ∅ )
21 3 20 nsyl ( 𝜑 → ¬ { ∅ } = { 𝐴 } )
22 21 neqned ( 𝜑 → { ∅ } ≠ { 𝐴 } )
23 17 22 nelprd ( 𝜑 → ¬ { ∅ } ∈ { ∅ , { 𝐴 } } )
24 23 adantr ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → ¬ { ∅ } ∈ { ∅ , { 𝐴 } } )
25 14 24 elnelneqd ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → ¬ 𝑎 = { ∅ , { 𝐴 } } )
26 25 adantrr ( ( 𝜑 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) → ¬ 𝑎 = { ∅ , { 𝐴 } } )
27 26 adantrl ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → ¬ 𝑎 = { ∅ , { 𝐴 } } )
28 elpri ( 𝑎 ∈ { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } → ( 𝑎 = { ∅ , { 𝐴 } } ∨ 𝑎 = { { ∅ } , { 𝐵 } } ) )
29 28 1 eleq2s ( 𝑎𝐹 → ( 𝑎 = { ∅ , { 𝐴 } } ∨ 𝑎 = { { ∅ } , { 𝐵 } } ) )
30 29 ord ( 𝑎𝐹 → ( ¬ 𝑎 = { ∅ , { 𝐴 } } → 𝑎 = { { ∅ } , { 𝐵 } } ) )
31 13 27 30 sylc ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝑎 = { { ∅ } , { 𝐵 } } )
32 31 unieqd ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝑎 = { { ∅ } , { 𝐵 } } )
33 snex { 𝐵 } ∈ V
34 8 33 unipr { { ∅ } , { 𝐵 } } = ( { ∅ } ∪ { 𝐵 } )
35 df-pr { ∅ , 𝐵 } = ( { ∅ } ∪ { 𝐵 } )
36 34 35 eqtr4i { { ∅ } , { 𝐵 } } = { ∅ , 𝐵 }
37 32 36 eqtrdi ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝑎 = { ∅ , 𝐵 } )
38 simprrr ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝑎𝑤 )
39 37 38 eqsstrrd ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → { ∅ , 𝐵 } ⊆ 𝑤 )
40 prssg ( ( ∅ ∈ V ∧ 𝐵𝑈 ) → ( ( ∅ ∈ 𝑤𝐵𝑤 ) ↔ { ∅ , 𝐵 } ⊆ 𝑤 ) )
41 18 2 40 sylancr ( 𝜑 → ( ( ∅ ∈ 𝑤𝐵𝑤 ) ↔ { ∅ , 𝐵 } ⊆ 𝑤 ) )
42 41 biimprd ( 𝜑 → ( { ∅ , 𝐵 } ⊆ 𝑤 → ( ∅ ∈ 𝑤𝐵𝑤 ) ) )
43 12 39 42 sylc ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → ( ∅ ∈ 𝑤𝐵𝑤 ) )
44 43 simprd ( ( 𝜑 ∧ ( 𝑎𝐹 ∧ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) ) → 𝐵𝑤 )
45 eleq2w ( 𝑢 = 𝑎 → ( { ∅ } ∈ 𝑢 ↔ { ∅ } ∈ 𝑎 ) )
46 unieq ( 𝑢 = 𝑎 𝑢 = 𝑎 )
47 46 sseq1d ( 𝑢 = 𝑎 → ( 𝑢𝑤 𝑎𝑤 ) )
48 45 47 anbi12d ( 𝑢 = 𝑎 → ( ( { ∅ } ∈ 𝑢 𝑢𝑤 ) ↔ ( { ∅ } ∈ 𝑎 𝑎𝑤 ) ) )
49 11 44 48 rexlimddvcbvw ( 𝜑𝐵𝑤 )