Step |
Hyp |
Ref |
Expression |
1 |
|
mnuprdlem2.1 |
⊢ 𝐹 = { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } |
2 |
|
mnuprdlem2.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
3 |
|
mnuprdlem2.5 |
⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
4 |
|
mnuprdlem2.8 |
⊢ ( 𝜑 → ∀ 𝑖 ∈ { ∅ , { ∅ } } ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑖 = { ∅ } → ( 𝑖 ∈ 𝑢 ↔ { ∅ } ∈ 𝑢 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑖 = { ∅ } → ( ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ( { ∅ } ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑖 = { ∅ } → ( ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐹 ( { ∅ } ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |
8 |
|
p0ex |
⊢ { ∅ } ∈ V |
9 |
8
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
10 |
9
|
a1i |
⊢ ( 𝜑 → { ∅ } ∈ { ∅ , { ∅ } } ) |
11 |
7 4 10
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐹 ( { ∅ } ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) |
12 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → 𝜑 ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → 𝑎 ∈ 𝐹 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → { ∅ } ∈ 𝑎 ) |
15 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
16 |
15
|
necomi |
⊢ { ∅ } ≠ ∅ |
17 |
16
|
a1i |
⊢ ( 𝜑 → { ∅ } ≠ ∅ ) |
18 |
|
0ex |
⊢ ∅ ∈ V |
19 |
18
|
sneqr |
⊢ ( { ∅ } = { 𝐴 } → ∅ = 𝐴 ) |
20 |
19
|
eqcomd |
⊢ ( { ∅ } = { 𝐴 } → 𝐴 = ∅ ) |
21 |
3 20
|
nsyl |
⊢ ( 𝜑 → ¬ { ∅ } = { 𝐴 } ) |
22 |
21
|
neqned |
⊢ ( 𝜑 → { ∅ } ≠ { 𝐴 } ) |
23 |
17 22
|
nelprd |
⊢ ( 𝜑 → ¬ { ∅ } ∈ { ∅ , { 𝐴 } } ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → ¬ { ∅ } ∈ { ∅ , { 𝐴 } } ) |
25 |
14 24
|
elnelneqd |
⊢ ( ( 𝜑 ∧ { ∅ } ∈ 𝑎 ) → ¬ 𝑎 = { ∅ , { 𝐴 } } ) |
26 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) → ¬ 𝑎 = { ∅ , { 𝐴 } } ) |
27 |
26
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → ¬ 𝑎 = { ∅ , { 𝐴 } } ) |
28 |
|
elpri |
⊢ ( 𝑎 ∈ { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } → ( 𝑎 = { ∅ , { 𝐴 } } ∨ 𝑎 = { { ∅ } , { 𝐵 } } ) ) |
29 |
28 1
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 = { ∅ , { 𝐴 } } ∨ 𝑎 = { { ∅ } , { 𝐵 } } ) ) |
30 |
29
|
ord |
⊢ ( 𝑎 ∈ 𝐹 → ( ¬ 𝑎 = { ∅ , { 𝐴 } } → 𝑎 = { { ∅ } , { 𝐵 } } ) ) |
31 |
13 27 30
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → 𝑎 = { { ∅ } , { 𝐵 } } ) |
32 |
31
|
unieqd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → ∪ 𝑎 = ∪ { { ∅ } , { 𝐵 } } ) |
33 |
|
snex |
⊢ { 𝐵 } ∈ V |
34 |
8 33
|
unipr |
⊢ ∪ { { ∅ } , { 𝐵 } } = ( { ∅ } ∪ { 𝐵 } ) |
35 |
|
df-pr |
⊢ { ∅ , 𝐵 } = ( { ∅ } ∪ { 𝐵 } ) |
36 |
34 35
|
eqtr4i |
⊢ ∪ { { ∅ } , { 𝐵 } } = { ∅ , 𝐵 } |
37 |
32 36
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → ∪ 𝑎 = { ∅ , 𝐵 } ) |
38 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → ∪ 𝑎 ⊆ 𝑤 ) |
39 |
37 38
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → { ∅ , 𝐵 } ⊆ 𝑤 ) |
40 |
|
prssg |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑈 ) → ( ( ∅ ∈ 𝑤 ∧ 𝐵 ∈ 𝑤 ) ↔ { ∅ , 𝐵 } ⊆ 𝑤 ) ) |
41 |
18 2 40
|
sylancr |
⊢ ( 𝜑 → ( ( ∅ ∈ 𝑤 ∧ 𝐵 ∈ 𝑤 ) ↔ { ∅ , 𝐵 } ⊆ 𝑤 ) ) |
42 |
41
|
biimprd |
⊢ ( 𝜑 → ( { ∅ , 𝐵 } ⊆ 𝑤 → ( ∅ ∈ 𝑤 ∧ 𝐵 ∈ 𝑤 ) ) ) |
43 |
12 39 42
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → ( ∅ ∈ 𝑤 ∧ 𝐵 ∈ 𝑤 ) ) |
44 |
43
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐹 ∧ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) → 𝐵 ∈ 𝑤 ) |
45 |
|
eleq2w |
⊢ ( 𝑢 = 𝑎 → ( { ∅ } ∈ 𝑢 ↔ { ∅ } ∈ 𝑎 ) ) |
46 |
|
unieq |
⊢ ( 𝑢 = 𝑎 → ∪ 𝑢 = ∪ 𝑎 ) |
47 |
46
|
sseq1d |
⊢ ( 𝑢 = 𝑎 → ( ∪ 𝑢 ⊆ 𝑤 ↔ ∪ 𝑎 ⊆ 𝑤 ) ) |
48 |
45 47
|
anbi12d |
⊢ ( 𝑢 = 𝑎 → ( ( { ∅ } ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ↔ ( { ∅ } ∈ 𝑎 ∧ ∪ 𝑎 ⊆ 𝑤 ) ) ) |
49 |
11 44 48
|
rexlimddvcbvw |
⊢ ( 𝜑 → 𝐵 ∈ 𝑤 ) |