Metamath Proof Explorer


Theorem cpcolld

Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses cpcolld.1 φxA
cpcolld.2 φxFy
Assertion cpcolld φyFCollAxFy

Proof

Step Hyp Ref Expression
1 cpcolld.1 φxA
2 cpcolld.2 φxFy
3 vex yV
4 breq2 z=yxFzxFy
5 3 4 elab yz|xFzxFy
6 2 5 sylibr φyz|xFz
7 6 19.8ad φyyz|xFz
8 7 scotteld φyyScottz|xFz
9 ssiun2 xAScottz|xFzxAScottz|xFz
10 dfcoll2 FCollA=xAScottz|xFz
11 9 10 sseqtrrdi xAScottz|xFzFCollA
12 11 sselda xAyScottz|xFzyFCollA
13 4 elscottab yScottz|xFzxFy
14 13 adantl xAyScottz|xFzxFy
15 12 14 jca xAyScottz|xFzyFCollAxFy
16 15 ex xAyScottz|xFzyFCollAxFy
17 16 eximdv xAyyScottz|xFzyyFCollAxFy
18 1 8 17 sylc φyyFCollAxFy
19 df-rex yFCollAxFyyyFCollAxFy
20 18 19 sylibr φyFCollAxFy