Metamath Proof Explorer


Theorem cpcolld

Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses cpcolld.1 ( 𝜑𝑥𝐴 )
cpcolld.2 ( 𝜑𝑥 𝐹 𝑦 )
Assertion cpcolld ( 𝜑 → ∃ 𝑦 ∈ ( 𝐹 Coll 𝐴 ) 𝑥 𝐹 𝑦 )

Proof

Step Hyp Ref Expression
1 cpcolld.1 ( 𝜑𝑥𝐴 )
2 cpcolld.2 ( 𝜑𝑥 𝐹 𝑦 )
3 vex 𝑦 ∈ V
4 breq2 ( 𝑧 = 𝑦 → ( 𝑥 𝐹 𝑧𝑥 𝐹 𝑦 ) )
5 3 4 elab ( 𝑦 ∈ { 𝑧𝑥 𝐹 𝑧 } ↔ 𝑥 𝐹 𝑦 )
6 2 5 sylibr ( 𝜑𝑦 ∈ { 𝑧𝑥 𝐹 𝑧 } )
7 6 19.8ad ( 𝜑 → ∃ 𝑦 𝑦 ∈ { 𝑧𝑥 𝐹 𝑧 } )
8 7 scotteld ( 𝜑 → ∃ 𝑦 𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } )
9 ssiun2 ( 𝑥𝐴 → Scott { 𝑧𝑥 𝐹 𝑧 } ⊆ 𝑥𝐴 Scott { 𝑧𝑥 𝐹 𝑧 } )
10 dfcoll2 ( 𝐹 Coll 𝐴 ) = 𝑥𝐴 Scott { 𝑧𝑥 𝐹 𝑧 }
11 9 10 sseqtrrdi ( 𝑥𝐴 → Scott { 𝑧𝑥 𝐹 𝑧 } ⊆ ( 𝐹 Coll 𝐴 ) )
12 11 sselda ( ( 𝑥𝐴𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } ) → 𝑦 ∈ ( 𝐹 Coll 𝐴 ) )
13 4 elscottab ( 𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } → 𝑥 𝐹 𝑦 )
14 13 adantl ( ( 𝑥𝐴𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } ) → 𝑥 𝐹 𝑦 )
15 12 14 jca ( ( 𝑥𝐴𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } ) → ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) )
16 15 ex ( 𝑥𝐴 → ( 𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } → ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) )
17 16 eximdv ( 𝑥𝐴 → ( ∃ 𝑦 𝑦 ∈ Scott { 𝑧𝑥 𝐹 𝑧 } → ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) )
18 1 8 17 sylc ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) )
19 df-rex ( ∃ 𝑦 ∈ ( 𝐹 Coll 𝐴 ) 𝑥 𝐹 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) )
20 18 19 sylibr ( 𝜑 → ∃ 𝑦 ∈ ( 𝐹 Coll 𝐴 ) 𝑥 𝐹 𝑦 )