Step |
Hyp |
Ref |
Expression |
1 |
|
cpcolld.1 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
2 |
|
cpcolld.2 |
⊢ ( 𝜑 → 𝑥 𝐹 𝑦 ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 𝐹 𝑧 ↔ 𝑥 𝐹 𝑦 ) ) |
5 |
3 4
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ 𝑥 𝐹 𝑧 } ↔ 𝑥 𝐹 𝑦 ) |
6 |
2 5
|
sylibr |
⊢ ( 𝜑 → 𝑦 ∈ { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) |
7 |
6
|
19.8ad |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) |
8 |
7
|
scotteld |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) |
9 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ⊆ ∪ 𝑥 ∈ 𝐴 Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) |
10 |
|
dfcoll2 |
⊢ ( 𝐹 Coll 𝐴 ) = ∪ 𝑥 ∈ 𝐴 Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } |
11 |
9 10
|
sseqtrrdi |
⊢ ( 𝑥 ∈ 𝐴 → Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ⊆ ( 𝐹 Coll 𝐴 ) ) |
12 |
11
|
sselda |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) → 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ) |
13 |
4
|
elscottab |
⊢ ( 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } → 𝑥 𝐹 𝑦 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) → 𝑥 𝐹 𝑦 ) |
15 |
12 14
|
jca |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } ) → ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) |
16 |
15
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } → ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) ) |
17 |
16
|
eximdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 𝑦 ∈ Scott { 𝑧 ∣ 𝑥 𝐹 𝑧 } → ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) ) |
18 |
1 8 17
|
sylc |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) |
19 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝐹 Coll 𝐴 ) 𝑥 𝐹 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐹 Coll 𝐴 ) ∧ 𝑥 𝐹 𝑦 ) ) |
20 |
18 19
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐹 Coll 𝐴 ) 𝑥 𝐹 𝑦 ) |