Metamath Proof Explorer


Theorem scotteld

Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis scotteld.1 ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
Assertion scotteld ( 𝜑 → ∃ 𝑥 𝑥 ∈ Scott 𝐴 )

Proof

Step Hyp Ref Expression
1 scotteld.1 ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
2 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
3 1 2 sylibr ( 𝜑𝐴 ≠ ∅ )
4 3 neneqd ( 𝜑 → ¬ 𝐴 = ∅ )
5 scott0 ( 𝐴 = ∅ ↔ { 𝑦𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
6 df-scott Scott 𝐴 = { 𝑦𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) }
7 6 eqeq1i ( Scott 𝐴 = ∅ ↔ { 𝑦𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
8 5 7 bitr4i ( 𝐴 = ∅ ↔ Scott 𝐴 = ∅ )
9 4 8 sylnib ( 𝜑 → ¬ Scott 𝐴 = ∅ )
10 9 neqned ( 𝜑 → Scott 𝐴 ≠ ∅ )
11 n0 ( Scott 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ Scott 𝐴 )
12 10 11 sylib ( 𝜑 → ∃ 𝑥 𝑥 ∈ Scott 𝐴 )