Step |
Hyp |
Ref |
Expression |
1 |
|
scotteld.1 |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
2 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
3 |
1 2
|
sylibr |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 |
3
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
5 |
|
scott0 |
⊢ ( 𝐴 = ∅ ↔ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) |
6 |
|
df-scott |
⊢ Scott 𝐴 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } |
7 |
6
|
eqeq1i |
⊢ ( Scott 𝐴 = ∅ ↔ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) |
8 |
5 7
|
bitr4i |
⊢ ( 𝐴 = ∅ ↔ Scott 𝐴 = ∅ ) |
9 |
4 8
|
sylnib |
⊢ ( 𝜑 → ¬ Scott 𝐴 = ∅ ) |
10 |
9
|
neqned |
⊢ ( 𝜑 → Scott 𝐴 ≠ ∅ ) |
11 |
|
n0 |
⊢ ( Scott 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ Scott 𝐴 ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ Scott 𝐴 ) |