Metamath Proof Explorer


Theorem scotteld

Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis scotteld.1
|- ( ph -> E. x x e. A )
Assertion scotteld
|- ( ph -> E. x x e. Scott A )

Proof

Step Hyp Ref Expression
1 scotteld.1
 |-  ( ph -> E. x x e. A )
2 n0
 |-  ( A =/= (/) <-> E. x x e. A )
3 1 2 sylibr
 |-  ( ph -> A =/= (/) )
4 3 neneqd
 |-  ( ph -> -. A = (/) )
5 scott0
 |-  ( A = (/) <-> { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) } = (/) )
6 df-scott
 |-  Scott A = { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) }
7 6 eqeq1i
 |-  ( Scott A = (/) <-> { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) } = (/) )
8 5 7 bitr4i
 |-  ( A = (/) <-> Scott A = (/) )
9 4 8 sylnib
 |-  ( ph -> -. Scott A = (/) )
10 9 neqned
 |-  ( ph -> Scott A =/= (/) )
11 n0
 |-  ( Scott A =/= (/) <-> E. x x e. Scott A )
12 10 11 sylib
 |-  ( ph -> E. x x e. Scott A )