| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scotteld.1 |
|- ( ph -> E. x x e. A ) |
| 2 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 3 |
1 2
|
sylibr |
|- ( ph -> A =/= (/) ) |
| 4 |
3
|
neneqd |
|- ( ph -> -. A = (/) ) |
| 5 |
|
scott0 |
|- ( A = (/) <-> { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
| 6 |
|
df-scott |
|- Scott A = { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) } |
| 7 |
6
|
eqeq1i |
|- ( Scott A = (/) <-> { y e. A | A. z e. A ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
| 8 |
5 7
|
bitr4i |
|- ( A = (/) <-> Scott A = (/) ) |
| 9 |
4 8
|
sylnib |
|- ( ph -> -. Scott A = (/) ) |
| 10 |
9
|
neqned |
|- ( ph -> Scott A =/= (/) ) |
| 11 |
|
n0 |
|- ( Scott A =/= (/) <-> E. x x e. Scott A ) |
| 12 |
10 11
|
sylib |
|- ( ph -> E. x x e. Scott A ) |