Metamath Proof Explorer


Theorem expandral

Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandral.1 φ ψ
Assertion expandral x A φ x x A ψ

Proof

Step Hyp Ref Expression
1 expandral.1 φ ψ
2 1 ralbii x A φ x A ψ
3 df-ral x A ψ x x A ψ
4 2 3 bitri x A φ x x A ψ