Metamath Proof Explorer


Theorem expandral

Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandral.1 φψ
Assertion expandral xAφxxAψ

Proof

Step Hyp Ref Expression
1 expandral.1 φψ
2 1 ralbii xAφxAψ
3 df-ral xAψxxAψ
4 2 3 bitri xAφxxAψ