Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expandral.1 | |- ( ph <-> ps ) |
|
| Assertion | expandral | |- ( A. x e. A ph <-> A. x ( x e. A -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expandral.1 | |- ( ph <-> ps ) |
|
| 2 | 1 | ralbii | |- ( A. x e. A ph <-> A. x e. A ps ) |
| 3 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 4 | 2 3 | bitri | |- ( A. x e. A ph <-> A. x ( x e. A -> ps ) ) |