Metamath Proof Explorer


Theorem expandral

Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandral.1
|- ( ph <-> ps )
Assertion expandral
|- ( A. x e. A ph <-> A. x ( x e. A -> ps ) )

Proof

Step Hyp Ref Expression
1 expandral.1
 |-  ( ph <-> ps )
2 1 ralbii
 |-  ( A. x e. A ph <-> A. x e. A ps )
3 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
4 2 3 bitri
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ps ) )