Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | expandrexn.1 | |- ( ph <-> -. ps ) |
|
Assertion | expandrexn | |- ( E. x e. A ph <-> -. A. x ( x e. A -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expandrexn.1 | |- ( ph <-> -. ps ) |
|
2 | 1 | rexbii | |- ( E. x e. A ph <-> E. x e. A -. ps ) |
3 | df-rex | |- ( E. x e. A -. ps <-> E. x ( x e. A /\ -. ps ) ) |
|
4 | exanali | |- ( E. x ( x e. A /\ -. ps ) <-> -. A. x ( x e. A -> ps ) ) |
|
5 | 2 3 4 | 3bitri | |- ( E. x e. A ph <-> -. A. x ( x e. A -> ps ) ) |