Metamath Proof Explorer


Theorem expandrexn

Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandrexn.1
|- ( ph <-> -. ps )
Assertion expandrexn
|- ( E. x e. A ph <-> -. A. x ( x e. A -> ps ) )

Proof

Step Hyp Ref Expression
1 expandrexn.1
 |-  ( ph <-> -. ps )
2 1 rexbii
 |-  ( E. x e. A ph <-> E. x e. A -. ps )
3 df-rex
 |-  ( E. x e. A -. ps <-> E. x ( x e. A /\ -. ps ) )
4 exanali
 |-  ( E. x ( x e. A /\ -. ps ) <-> -. A. x ( x e. A -> ps ) )
5 2 3 4 3bitri
 |-  ( E. x e. A ph <-> -. A. x ( x e. A -> ps ) )