Description: Expand a restricted existential quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expandrex.1 | |- ( ph <-> ps ) |
|
| Assertion | expandrex | |- ( E. x e. A ph <-> -. A. x ( x e. A -> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expandrex.1 | |- ( ph <-> ps ) |
|
| 2 | notnotb | |- ( ps <-> -. -. ps ) |
|
| 3 | 1 2 | bitri | |- ( ph <-> -. -. ps ) |
| 4 | 3 | expandrexn | |- ( E. x e. A ph <-> -. A. x ( x e. A -> -. ps ) ) |