Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | expandrexn.1 | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) | |
Assertion | expandrexn | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expandrexn.1 | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) | |
2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝜓 ) |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜓 ) ) | |
4 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
5 | 2 3 4 | 3bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |