Metamath Proof Explorer


Theorem gneispacef2

Description: A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispacef2 F A F : dom F 𝒫 𝒫 dom F

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 elex F A F V
3 1 gneispace F V F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
4 2 3 syl F A F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
5 4 ibi F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
6 simp1 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p Fun F
7 6 funfnd Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p F Fn dom F
8 simp2 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
9 df-f F : dom F 𝒫 𝒫 dom F F Fn dom F ran F 𝒫 𝒫 dom F
10 7 8 9 sylanbrc Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p F : dom F 𝒫 𝒫 dom F
11 5 10 syl F A F : dom F 𝒫 𝒫 dom F