Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Exploring Topology via Seifert and Threlfall
Generic Neighborhood Spaces
gneispacefun
Next ⟩
gneispacern
Metamath Proof Explorer
Ascii
Unicode
Theorem
gneispacefun
Description:
A generic neighborhood space is a function.
(Contributed by
RP
, 15-Apr-2021)
Ref
Expression
Hypothesis
gneispace.a
⊢
A
=
f
|
f
:
dom
⁡
f
⟶
𝒫
𝒫
dom
⁡
f
∖
∅
∖
∅
∧
∀
p
∈
dom
⁡
f
∀
n
∈
f
⁡
p
p
∈
n
∧
∀
s
∈
𝒫
dom
⁡
f
n
⊆
s
→
s
∈
f
⁡
p
Assertion
gneispacefun
⊢
F
∈
A
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
gneispace.a
⊢
A
=
f
|
f
:
dom
⁡
f
⟶
𝒫
𝒫
dom
⁡
f
∖
∅
∖
∅
∧
∀
p
∈
dom
⁡
f
∀
n
∈
f
⁡
p
p
∈
n
∧
∀
s
∈
𝒫
dom
⁡
f
n
⊆
s
→
s
∈
f
⁡
p
2
1
gneispacef
⊢
F
∈
A
→
F
:
dom
⁡
F
⟶
𝒫
𝒫
dom
⁡
F
∖
∅
∖
∅
3
2
ffund
⊢
F
∈
A
→
Fun
⁡
F