Description: A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gneispace.a | |- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
|
Assertion | gneispacefun | |- ( F e. A -> Fun F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | |- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
|
2 | 1 | gneispacef | |- ( F e. A -> F : dom F --> ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) |
3 | 2 | ffund | |- ( F e. A -> Fun F ) |