Description: An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpasscan2d.b | |- B = ( Base ` G ) |
|
| grpasscan2d.p | |- .+ = ( +g ` G ) |
||
| grpasscan2d.n | |- N = ( invg ` G ) |
||
| grpasscan2d.g | |- ( ph -> G e. Grp ) |
||
| grpasscan2d.1 | |- ( ph -> X e. B ) |
||
| grpasscan2d.2 | |- ( ph -> Y e. B ) |
||
| Assertion | grpasscan2d | |- ( ph -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan2d.b | |- B = ( Base ` G ) |
|
| 2 | grpasscan2d.p | |- .+ = ( +g ` G ) |
|
| 3 | grpasscan2d.n | |- N = ( invg ` G ) |
|
| 4 | grpasscan2d.g | |- ( ph -> G e. Grp ) |
|
| 5 | grpasscan2d.1 | |- ( ph -> X e. B ) |
|
| 6 | grpasscan2d.2 | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 | grpasscan2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ph -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X ) |