Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcominv.b | |- B = ( Base ` G ) | |
| grpcominv.p | |- .+ = ( +g ` G ) | ||
| grpcominv.n | |- N = ( invg ` G ) | ||
| grpcominv.g | |- ( ph -> G e. Grp ) | ||
| grpcominv.x | |- ( ph -> X e. B ) | ||
| grpcominv.y | |- ( ph -> Y e. B ) | ||
| grpcominv.1 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) | ||
| Assertion | grpcominv2 | |- ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpcominv.b | |- B = ( Base ` G ) | |
| 2 | grpcominv.p | |- .+ = ( +g ` G ) | |
| 3 | grpcominv.n | |- N = ( invg ` G ) | |
| 4 | grpcominv.g | |- ( ph -> G e. Grp ) | |
| 5 | grpcominv.x | |- ( ph -> X e. B ) | |
| 6 | grpcominv.y | |- ( ph -> Y e. B ) | |
| 7 | grpcominv.1 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) | |
| 8 | 7 | eqcomd | |- ( ph -> ( Y .+ X ) = ( X .+ Y ) ) | 
| 9 | 1 2 3 4 6 5 8 | grpcominv1 | |- ( ph -> ( Y .+ ( N ` X ) ) = ( ( N ` X ) .+ Y ) ) |