| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 |  |-  X = ran G | 
						
							| 2 |  | grpdiv.2 |  |-  N = ( inv ` G ) | 
						
							| 3 |  | grpdiv.3 |  |-  D = ( /g ` G ) | 
						
							| 4 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 6 | 1 2 3 | grpodivval |  |-  ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( A D ( N ` B ) ) = ( A G ( N ` ( N ` B ) ) ) ) | 
						
							| 7 | 5 6 | syld3an3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D ( N ` B ) ) = ( A G ( N ` ( N ` B ) ) ) ) | 
						
							| 8 | 1 2 | grpo2inv |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` ( N ` B ) ) ) = ( A G B ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D ( N ` B ) ) = ( A G B ) ) |