Metamath Proof Explorer


Theorem grpolid

Description: The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1
|- X = ran G
grpoidval.2
|- U = ( GId ` G )
Assertion grpolid
|- ( ( G e. GrpOp /\ A e. X ) -> ( U G A ) = A )

Proof

Step Hyp Ref Expression
1 grpoidval.1
 |-  X = ran G
2 grpoidval.2
 |-  U = ( GId ` G )
3 1 2 grpoidinv2
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) )
4 3 simplld
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( U G A ) = A )