| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ran G = ran G | 
						
							| 2 | 1 | grpofo |  |-  ( G e. GrpOp -> G : ( ran G X. ran G ) -onto-> ran G ) | 
						
							| 3 |  | fof |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> G : ( ran G X. ran G ) --> ran G ) | 
						
							| 4 | 3 | fdmd |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> dom G = ( ran G X. ran G ) ) | 
						
							| 5 | 4 | dmeqd |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> dom dom G = dom ( ran G X. ran G ) ) | 
						
							| 6 |  | dmxpid |  |-  dom ( ran G X. ran G ) = ran G | 
						
							| 7 | 5 6 | eqtr2di |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> ran G = dom dom G ) | 
						
							| 8 | 2 7 | syl |  |-  ( G e. GrpOp -> ran G = dom dom G ) |