| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfidmadd.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfidmadd.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsummptfidmadd.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfidmadd.a |
|- ( ph -> A e. Fin ) |
| 5 |
|
gsummptfidmadd.c |
|- ( ( ph /\ x e. A ) -> C e. B ) |
| 6 |
|
gsummptfidmadd.d |
|- ( ( ph /\ x e. A ) -> D e. B ) |
| 7 |
|
gsummptfidmadd.f |
|- F = ( x e. A |-> C ) |
| 8 |
|
gsummptfidmadd.h |
|- H = ( x e. A |-> D ) |
| 9 |
7
|
a1i |
|- ( ph -> F = ( x e. A |-> C ) ) |
| 10 |
8
|
a1i |
|- ( ph -> H = ( x e. A |-> D ) ) |
| 11 |
4 5 6 9 10
|
offval2 |
|- ( ph -> ( F oF .+ H ) = ( x e. A |-> ( C .+ D ) ) ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( G gsum ( x e. A |-> ( C .+ D ) ) ) ) |
| 13 |
1 2 3 4 5 6 7 8
|
gsummptfidmadd |
|- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 14 |
12 13
|
eqtrd |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |