Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfidmadd.b |
|- B = ( Base ` G ) |
2 |
|
gsummptfidmadd.p |
|- .+ = ( +g ` G ) |
3 |
|
gsummptfidmadd.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptfidmadd.a |
|- ( ph -> A e. Fin ) |
5 |
|
gsummptfidmadd.c |
|- ( ( ph /\ x e. A ) -> C e. B ) |
6 |
|
gsummptfidmadd.d |
|- ( ( ph /\ x e. A ) -> D e. B ) |
7 |
|
gsummptfidmadd.f |
|- F = ( x e. A |-> C ) |
8 |
|
gsummptfidmadd.h |
|- H = ( x e. A |-> D ) |
9 |
7
|
a1i |
|- ( ph -> F = ( x e. A |-> C ) ) |
10 |
8
|
a1i |
|- ( ph -> H = ( x e. A |-> D ) ) |
11 |
4 5 6 9 10
|
offval2 |
|- ( ph -> ( F oF .+ H ) = ( x e. A |-> ( C .+ D ) ) ) |
12 |
11
|
oveq2d |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( G gsum ( x e. A |-> ( C .+ D ) ) ) ) |
13 |
1 2 3 4 5 6 7 8
|
gsummptfidmadd |
|- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
14 |
12 13
|
eqtrd |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |