Metamath Proof Explorer


Theorem gsummptfidmadd2

Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmadd.b B=BaseG
gsummptfidmadd.p +˙=+G
gsummptfidmadd.g φGCMnd
gsummptfidmadd.a φAFin
gsummptfidmadd.c φxACB
gsummptfidmadd.d φxADB
gsummptfidmadd.f F=xAC
gsummptfidmadd.h H=xAD
Assertion gsummptfidmadd2 φGF+˙fH=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsummptfidmadd.b B=BaseG
2 gsummptfidmadd.p +˙=+G
3 gsummptfidmadd.g φGCMnd
4 gsummptfidmadd.a φAFin
5 gsummptfidmadd.c φxACB
6 gsummptfidmadd.d φxADB
7 gsummptfidmadd.f F=xAC
8 gsummptfidmadd.h H=xAD
9 7 a1i φF=xAC
10 8 a1i φH=xAD
11 4 5 6 9 10 offval2 φF+˙fH=xAC+˙D
12 11 oveq2d φGF+˙fH=GxAC+˙D
13 1 2 3 4 5 6 7 8 gsummptfidmadd φGxAC+˙D=GF+˙GH
14 12 13 eqtrd φGF+˙fH=GF+˙GH