Metamath Proof Explorer


Theorem gsummptfidminv

Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsuminv.b
|- B = ( Base ` G )
gsuminv.z
|- .0. = ( 0g ` G )
gsuminv.p
|- I = ( invg ` G )
gsuminv.g
|- ( ph -> G e. Abel )
gsummptfidminv.a
|- ( ph -> A e. Fin )
gsummptfidminv.c
|- ( ( ph /\ x e. A ) -> C e. B )
gsummptfidminv.f
|- F = ( x e. A |-> C )
Assertion gsummptfidminv
|- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) )

Proof

Step Hyp Ref Expression
1 gsuminv.b
 |-  B = ( Base ` G )
2 gsuminv.z
 |-  .0. = ( 0g ` G )
3 gsuminv.p
 |-  I = ( invg ` G )
4 gsuminv.g
 |-  ( ph -> G e. Abel )
5 gsummptfidminv.a
 |-  ( ph -> A e. Fin )
6 gsummptfidminv.c
 |-  ( ( ph /\ x e. A ) -> C e. B )
7 gsummptfidminv.f
 |-  F = ( x e. A |-> C )
8 6 7 fmptd
 |-  ( ph -> F : A --> B )
9 2 fvexi
 |-  .0. e. _V
10 9 a1i
 |-  ( ph -> .0. e. _V )
11 7 5 6 10 fsuppmptdm
 |-  ( ph -> F finSupp .0. )
12 1 2 3 4 5 8 11 gsuminv
 |-  ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) )