| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfsres.1 |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfsres.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsummptfsres.3 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfsres.4 |
|- ( ph -> A e. V ) |
| 5 |
|
gsummptfsres.5 |
|- ( ( ph /\ x e. ( A \ S ) ) -> Y = .0. ) |
| 6 |
|
gsummptfsres.6 |
|- ( ph -> ( x e. A |-> Y ) finSupp .0. ) |
| 7 |
|
gsummptfsres.7 |
|- ( ( ph /\ x e. A ) -> Y e. B ) |
| 8 |
|
gsummptfsres.8 |
|- ( ph -> S C_ A ) |
| 9 |
7
|
fmpttd |
|- ( ph -> ( x e. A |-> Y ) : A --> B ) |
| 10 |
5 4
|
suppss2 |
|- ( ph -> ( ( x e. A |-> Y ) supp .0. ) C_ S ) |
| 11 |
1 2 3 4 9 10 6
|
gsumres |
|- ( ph -> ( G gsum ( ( x e. A |-> Y ) |` S ) ) = ( G gsum ( x e. A |-> Y ) ) ) |
| 12 |
8
|
resmptd |
|- ( ph -> ( ( x e. A |-> Y ) |` S ) = ( x e. S |-> Y ) ) |
| 13 |
12
|
oveq2d |
|- ( ph -> ( G gsum ( ( x e. A |-> Y ) |` S ) ) = ( G gsum ( x e. S |-> Y ) ) ) |
| 14 |
11 13
|
eqtr3d |
|- ( ph -> ( G gsum ( x e. A |-> Y ) ) = ( G gsum ( x e. S |-> Y ) ) ) |