| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfsres.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptfsres.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsummptfsres.3 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptfsres.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsummptfsres.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑆 ) ) → 𝑌 = 0 ) |
| 6 |
|
gsummptfsres.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) |
| 7 |
|
gsummptfsres.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
| 8 |
|
gsummptfsres.8 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐴 ) |
| 9 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) : 𝐴 ⟶ 𝐵 ) |
| 10 |
5 4
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) supp 0 ) ⊆ 𝑆 ) |
| 11 |
1 2 3 4 9 10 6
|
gsumres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ↾ 𝑆 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ) ) |
| 12 |
8
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ↾ 𝑆 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ) |
| 14 |
11 13
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝑆 ↦ 𝑌 ) ) ) |