Metamath Proof Explorer


Theorem gsummptfsres

Description: Extend a finitely supported group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptfsres.1 𝐵 = ( Base ‘ 𝐺 )
gsummptfsres.2 0 = ( 0g𝐺 )
gsummptfsres.3 ( 𝜑𝐺 ∈ CMnd )
gsummptfsres.4 ( 𝜑𝐴𝑉 )
gsummptfsres.5 ( ( 𝜑𝑥 ∈ ( 𝐴𝑆 ) ) → 𝑌 = 0 )
gsummptfsres.6 ( 𝜑 → ( 𝑥𝐴𝑌 ) finSupp 0 )
gsummptfsres.7 ( ( 𝜑𝑥𝐴 ) → 𝑌𝐵 )
gsummptfsres.8 ( 𝜑𝑆𝐴 )
Assertion gsummptfsres ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfsres.1 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfsres.2 0 = ( 0g𝐺 )
3 gsummptfsres.3 ( 𝜑𝐺 ∈ CMnd )
4 gsummptfsres.4 ( 𝜑𝐴𝑉 )
5 gsummptfsres.5 ( ( 𝜑𝑥 ∈ ( 𝐴𝑆 ) ) → 𝑌 = 0 )
6 gsummptfsres.6 ( 𝜑 → ( 𝑥𝐴𝑌 ) finSupp 0 )
7 gsummptfsres.7 ( ( 𝜑𝑥𝐴 ) → 𝑌𝐵 )
8 gsummptfsres.8 ( 𝜑𝑆𝐴 )
9 7 fmpttd ( 𝜑 → ( 𝑥𝐴𝑌 ) : 𝐴𝐵 )
10 5 4 suppss2 ( 𝜑 → ( ( 𝑥𝐴𝑌 ) supp 0 ) ⊆ 𝑆 )
11 1 2 3 4 9 10 6 gsumres ( 𝜑 → ( 𝐺 Σg ( ( 𝑥𝐴𝑌 ) ↾ 𝑆 ) ) = ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) )
12 8 resmptd ( 𝜑 → ( ( 𝑥𝐴𝑌 ) ↾ 𝑆 ) = ( 𝑥𝑆𝑌 ) )
13 12 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑥𝐴𝑌 ) ↾ 𝑆 ) ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )
14 11 13 eqtr3d ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝑌 ) ) = ( 𝐺 Σg ( 𝑥𝑆𝑌 ) ) )