| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumprval.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumprval.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsumprval.g |
|- ( ph -> G e. V ) |
| 4 |
|
gsumprval.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
gsumprval.n |
|- ( ph -> N = ( M + 1 ) ) |
| 6 |
|
gsumprval.f |
|- ( ph -> F : { M , N } --> B ) |
| 7 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 9 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 11 |
|
fzpr |
|- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 12 |
4 11
|
syl |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 13 |
5
|
eqcomd |
|- ( ph -> ( M + 1 ) = N ) |
| 14 |
13
|
preq2d |
|- ( ph -> { M , ( M + 1 ) } = { M , N } ) |
| 15 |
12 14
|
eqtrd |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , N } ) |
| 16 |
15
|
feq2d |
|- ( ph -> ( F : ( M ... ( M + 1 ) ) --> B <-> F : { M , N } --> B ) ) |
| 17 |
6 16
|
mpbird |
|- ( ph -> F : ( M ... ( M + 1 ) ) --> B ) |
| 18 |
1 2 3 10 17
|
gsumval2 |
|- ( ph -> ( G gsum F ) = ( seq M ( .+ , F ) ` ( M + 1 ) ) ) |
| 19 |
|
seqp1 |
|- ( M e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 20 |
8 19
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 22 |
4 21
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 23 |
13
|
fveq2d |
|- ( ph -> ( F ` ( M + 1 ) ) = ( F ` N ) ) |
| 24 |
22 23
|
oveq12d |
|- ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) = ( ( F ` M ) .+ ( F ` N ) ) ) |
| 25 |
18 20 24
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( ( F ` M ) .+ ( F ` N ) ) ) |