Step |
Hyp |
Ref |
Expression |
1 |
|
gsumprval.b |
|- B = ( Base ` G ) |
2 |
|
gsumprval.p |
|- .+ = ( +g ` G ) |
3 |
|
gsumprval.g |
|- ( ph -> G e. V ) |
4 |
|
gsumprval.m |
|- ( ph -> M e. ZZ ) |
5 |
|
gsumprval.n |
|- ( ph -> N = ( M + 1 ) ) |
6 |
|
gsumprval.f |
|- ( ph -> F : { M , N } --> B ) |
7 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
8 |
4 7
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
9 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
11 |
|
fzpr |
|- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
12 |
4 11
|
syl |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
13 |
5
|
eqcomd |
|- ( ph -> ( M + 1 ) = N ) |
14 |
13
|
preq2d |
|- ( ph -> { M , ( M + 1 ) } = { M , N } ) |
15 |
12 14
|
eqtrd |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , N } ) |
16 |
15
|
feq2d |
|- ( ph -> ( F : ( M ... ( M + 1 ) ) --> B <-> F : { M , N } --> B ) ) |
17 |
6 16
|
mpbird |
|- ( ph -> F : ( M ... ( M + 1 ) ) --> B ) |
18 |
1 2 3 10 17
|
gsumval2 |
|- ( ph -> ( G gsum F ) = ( seq M ( .+ , F ) ` ( M + 1 ) ) ) |
19 |
|
seqp1 |
|- ( M e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
20 |
8 19
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` ( M + 1 ) ) = ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
22 |
4 21
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
23 |
13
|
fveq2d |
|- ( ph -> ( F ` ( M + 1 ) ) = ( F ` N ) ) |
24 |
22 23
|
oveq12d |
|- ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) = ( ( F ` M ) .+ ( F ` N ) ) ) |
25 |
18 20 24
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( ( F ` M ) .+ ( F ` N ) ) ) |