Metamath Proof Explorer


Theorem hadbi123i

Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses hadbii.1
|- ( ph <-> ps )
hadbii.2
|- ( ch <-> th )
hadbii.3
|- ( ta <-> et )
Assertion hadbi123i
|- ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) )

Proof

Step Hyp Ref Expression
1 hadbii.1
 |-  ( ph <-> ps )
2 hadbii.2
 |-  ( ch <-> th )
3 hadbii.3
 |-  ( ta <-> et )
4 1 a1i
 |-  ( T. -> ( ph <-> ps ) )
5 2 a1i
 |-  ( T. -> ( ch <-> th ) )
6 3 a1i
 |-  ( T. -> ( ta <-> et ) )
7 4 5 6 hadbi123d
 |-  ( T. -> ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) ) )
8 7 mptru
 |-  ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) )