Metamath Proof Explorer


Theorem hadbi123d

Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses hadbid.1
|- ( ph -> ( ps <-> ch ) )
hadbid.2
|- ( ph -> ( th <-> ta ) )
hadbid.3
|- ( ph -> ( et <-> ze ) )
Assertion hadbi123d
|- ( ph -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) )

Proof

Step Hyp Ref Expression
1 hadbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 hadbid.2
 |-  ( ph -> ( th <-> ta ) )
3 hadbid.3
 |-  ( ph -> ( et <-> ze ) )
4 1 2 xorbi12d
 |-  ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) )
5 4 3 xorbi12d
 |-  ( ph -> ( ( ( ps \/_ th ) \/_ et ) <-> ( ( ch \/_ ta ) \/_ ze ) ) )
6 df-had
 |-  ( hadd ( ps , th , et ) <-> ( ( ps \/_ th ) \/_ et ) )
7 df-had
 |-  ( hadd ( ch , ta , ze ) <-> ( ( ch \/_ ta ) \/_ ze ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) )