Metamath Proof Explorer


Theorem hadbi123d

Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses hadbid.1 φψχ
hadbid.2 φθτ
hadbid.3 φηζ
Assertion hadbi123d φhaddψθηhaddχτζ

Proof

Step Hyp Ref Expression
1 hadbid.1 φψχ
2 hadbid.2 φθτ
3 hadbid.3 φηζ
4 1 2 xorbi12d φψθχτ
5 4 3 xorbi12d φψθηχτζ
6 df-had haddψθηψθη
7 df-had haddχτζχτζ
8 5 6 7 3bitr4g φhaddψθηhaddχτζ