Metamath Proof Explorer


Theorem hadbi123d

Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses hadbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
hadbid.2 ( 𝜑 → ( 𝜃𝜏 ) )
hadbid.3 ( 𝜑 → ( 𝜂𝜁 ) )
Assertion hadbi123d ( 𝜑 → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 hadbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 hadbid.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 hadbid.3 ( 𝜑 → ( 𝜂𝜁 ) )
4 1 2 xorbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )
5 4 3 xorbi12d ( 𝜑 → ( ( ( 𝜓𝜃 ) ⊻ 𝜂 ) ↔ ( ( 𝜒𝜏 ) ⊻ 𝜁 ) ) )
6 df-had ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( 𝜓𝜃 ) ⊻ 𝜂 ) )
7 df-had ( hadd ( 𝜒 , 𝜏 , 𝜁 ) ↔ ( ( 𝜒𝜏 ) ⊻ 𝜁 ) )
8 5 6 7 3bitr4g ( 𝜑 → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) )