Description: A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hausnlly | |- ( J e. N-Locally Haus <-> J e. Locally Haus ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resthaus | |- ( ( j e. Haus /\ x e. j ) -> ( j |`t x ) e. Haus ) | |
| 2 | 1 | adantl | |- ( ( T. /\ ( j e. Haus /\ x e. j ) ) -> ( j |`t x ) e. Haus ) | 
| 3 | 2 | restnlly | |- ( T. -> N-Locally Haus = Locally Haus ) | 
| 4 | 3 | mptru | |- N-Locally Haus = Locally Haus | 
| 5 | 4 | eleq2i | |- ( J e. N-Locally Haus <-> J e. Locally Haus ) |